Product Description
Details Photos:
1.It is equipped with an angular contact ball bearing, so it can support the external load with the rigid moment and large allowable moment
2.Easy assemble, small vibration
3.It can reduce the motor straight junction (input gear) and inertia
4.Large torsional rigidity
5.Strong impact resistance (500% of rated torque)
6.The crankshaft is supported by 2 columns in the reducer
7.Excellent starting efficiency & Small wear and long service life
8.Small backlash (1arc. Min.) & Use rolling bearing
9.Strong impact resistance (500% of rated torque)
10.The number of simultaneous engagements between RV gear and needle teeth is large
Advantages:
1. High precision, high torque
2. Dedicated technical personnel can be on the go to provide design solutions
3. Factory direct sales fine workmanship durable quality assurance
4. Product quality issues have a one-year warranty time, can be returned for replacement or repair
Company profile:
HangZhou CZPT Technology Co., Ltd. was established in 2014. Based on long-term accumulated experience in mechanical design and manufacturing, various types of harmonic reducers have been developed according to the different needs of customers. The company is in a stage of rapid development. , Equipment and personnel are constantly expanding. Now we have a group of experienced technical and managerial personnel, with advanced equipment, complete testing methods, and product manufacturing and design capabilities. Product design and production can be carried out according to customer needs, and a variety of high-precision transmission components such as harmonic reducers and RV reducers have been formed; the products have been sold in domestic and global(Such as USA, Germany, Turkey, India) and have been used in industrial robots, machine tools, medical equipment, laser processing, cutting, and dispensing, Brush making, LED equipment manufacturing, precision electronic equipment, and other industries have established a good reputation.
In the future, Hongwing will adhere to the purpose of gathering talents, keeping close to the market, and technological innovation, carry CZPT the value pursuit in the field of harmonic drive&RV reducers, seek the common development of the company and the society, and quietly build itself into a CZPT brand with independent intellectual property rights. Quality supplier in the field of precision transmission”.
Strength factory:
Our plant has an entire campus The number of workshops is around 300 Whether it’s from the production of raw materials and the procurement of raw materials to the inspection of finished products, we’re doing it ourselves. There is a complete production system
Parameter:
Rated Table | ||||||||||||||
Output rotational speed (rpm) | 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | |||||
Model | Speed ratio code | Transmission Ratio(R) | Output Torque (Nm) / Enter the capacity (kW |
|||||||||||
Rotation of axes | Housing rotation | |||||||||||||
RV-6E | 31 | 31 | 30 | 101 / 0.07 |
81 / 0.11 |
72 / 0.15 |
66 / 0.19 |
62 / 0.22 |
58 / 0.25 |
54 / 0.30 |
50 / 0.35 |
47 / 0.40 |
||
43 | 43 | 42 | ||||||||||||
53.5 | 53.5 | 52.5 | ||||||||||||
59 | 59 | 58 | ||||||||||||
79 | 79 | 78 | ||||||||||||
103 | 103 | 102 | ||||||||||||
RV-20E | 57 | 57 | 56 | 231 / 0.16 |
188 / 0.26 |
167 / 0.35 |
153 / 0.43 |
143 / 0.50 |
135 / 0.57 |
124 / 0.70 |
115 / 0.81 |
110 / 0.92 |
||
81 | 81 | 80 | ||||||||||||
105 | 105 | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
141 | 141 | 140 | ||||||||||||
161 | 161 | 160 | ||||||||||||
RV-40E | 57 | 57 | 56 | 572 / 0.40 |
465 / 0.65 |
412 / 0.86 |
377 / 1.05 |
353 / 1.23 |
334 / 1.40 |
307 / 1.71 |
287 / 2.00 |
271 / 2.27 |
||
81 | 81 | 80 | ||||||||||||
105 | 105 | 104 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 153 | 152 | ||||||||||||
RV-80E | 57 | 57 | 56 | 1,088 / 0.76 |
885 / 1.24 |
784 / 1.64 |
719 / 2.01 |
672 / 2.35 |
637 / 2.67 |
584 / 3.26 |
546 / 3.81 |
517 / 4.33 |
||
81 | 81 | 80 | ||||||||||||
101 | 101 | 100 | ||||||||||||
121 | 121 | 120 | ||||||||||||
153 | 1(153) | 1(152) | ||||||||||||
RV-110E | 81 | 81 | 80 | 1,499 / 1.05 |
1,215 / 1.70 |
1,078 / 2.26 |
990 / 2.76 |
925 / 3.23 |
875 / 3.67 |
804 / 4.49 |
||||
111 | 111 | 110 | ||||||||||||
161 | 161 | 160 | ||||||||||||
175 | 1227/7 | 1220/7 | ||||||||||||
RV-160E | 81 | 81 | 80 | 2,176 / 1.52 |
1,774 / 2.48 |
1,568 / 3.28 |
1,441 / 4.02 |
1,343 / 4.69 |
1,274 / 5.34 |
|||||
101 | 101 | 100 | ||||||||||||
129 | 129 | 128 | ||||||||||||
145 | 145 | 144 | ||||||||||||
171 | 171 | 170 | ||||||||||||
RV-320E | 81 | 81 | 80 | 4,361 / 3.04 |
3,538 / 4.94 |
3,136 / 6.57 |
2,881 / 8.05 |
2,695 / 9.41 |
2,548 / 10.7 |
|||||
101 | 101 | 100 | ||||||||||||
118.5 | 118.5 | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
141 | 141 | 140 | ||||||||||||
171 | 171 | 170 | ||||||||||||
185 | 185 | 184 | ||||||||||||
RV-450E | 81 | 81 | 80 | 6,135 / 4.28 |
4,978 / 6.95 |
4,410 / 9.24 |
4,047 / 11.3 |
3,783 / 13.2 |
||||||
101 | 101 | 100 | ||||||||||||
118.5 | 118.5 | 117.5 | ||||||||||||
129 | 129 | 128 | ||||||||||||
154.8 | 2013/13 | 2000/13 | ||||||||||||
171 | 171 | 170 | ||||||||||||
192 | 1347/7 | 1340/7 | ||||||||||||
Note: 1. The allowable output speed is affected by duty cycle, load, and ambient temperature. When the allowable output speed is above NS1, please consult our company about the precautions. 2. Calculate the input capacity (kW) by the following formula. |
||||||||||||||
Input capacity (kW) =(2π*N*T)/(60*η/100*10*10*10) | N: output speed (RPM) T: output torque (nm) η = 75: reducer efficiency (%) |
|||||||||||||
The input capacity is the reference value. 3. When using the reducer at a low temperature, the no-load running torque will increase, so please pay attention when selecting the motor. (refer to p.93 low-temperature characteristics) |
T0 Rated torque(Remark .7) |
N0 Rated output speed |
K Rated life |
TS1 Allowable starting and stopping torque |
TS2 Instantaneous maximum allowable torque |
NS0 Allowable maximum output speed (Remark .1) |
Backlash | Empty distance MAX. | Angle transmission error MAX. | A representative value of starting efficiency | MO1 Allowable moment (Remark .4) |
MO2 Instantaneous maximum allowable moment |
Wr Allowable radial load (Remark .10) |
I Converted value of inertia moment input shaft (Remark .5) |
Weight |
(Nm) | (rpm) | (h) | (Nm) | (Nm) | (r/min) | (arc.sec.) | (arc.min.) | (arc.sec.) | (%) | (Nm) | (Nm) | (N) | (kgm2) | (kg) |
58 | 30 | 6,000 | 117 | 294 | 100 | 1.5 | 1.5 | 80 | 70 | 196 | 392 | 2,140 | 2.63×10-6 | 2.5 |
2.00×10-6 | ||||||||||||||
1.53×10-6 | ||||||||||||||
1.39×10-6 | ||||||||||||||
1.09×10-6 | ||||||||||||||
0.74×10-6 | ||||||||||||||
167 | 15 | 6,000 | 412 | 833 | 75 | 1.0 | 1.0 | 70 | 75 | 882 | 1,764 | 7,785 | 9.66×10-6 | 4.7 |
6.07×10-6 | ||||||||||||||
4.32×10-6 | ||||||||||||||
3.56×10-6 | ||||||||||||||
2.88×10-6 | ||||||||||||||
2.39×10-6 | ||||||||||||||
412 | 15 | 6,000 | 1,571 | 2,058 | 70 | 1.0 | 1.0 | 60 | 85 | 1,666 | 3,332 | 11,594 | 3.25×10-5 | 9.3 |
2.20×10-5 | ||||||||||||||
1.63×10-5 | ||||||||||||||
1.37×10-5 | ||||||||||||||
1.01×10-5 | ||||||||||||||
784 | 15 | 6,000 | 1,960 | Bolt tightening 3920 | 70 | 1.0 | 1.0 | 50 | 85 | Bolt fastening 2156 | Bolt tightening | Bolt tightening 12988 | 8.16×10-5 | Bolt tightening 13.1 |
6.00×10-5 | ||||||||||||||
4.82×10-5 | ||||||||||||||
Pin combination 3185 | Pin combination 1735 | Pin combination 2156 | Pin combination 1571 | Pin combination 12.7 | ||||||||||
3.96×10-5 | ||||||||||||||
2.98×10-5 | ||||||||||||||
1,078 | 15 | 6,000 | 2,695 | 5,390 | 50 | 1.0 | 1.0 | 50 | 85 | 2,940 | 5,880 | 16,648 | 9.88×10-5 | 17.4 |
6.96×10-5 | ||||||||||||||
4.36×10-5 | ||||||||||||||
3.89×10-5 | ||||||||||||||
1,568 | 15 | 6,000 | 3,920 | Bolt tightening 7840 | 45 | 1.0 | 1.0 | 50 | 85 | 3,920 | Bolt tightening 7840 | 18,587 | 1.77×10-4 | 26.4 |
1.40×10-4 | ||||||||||||||
1.06×10-4 | ||||||||||||||
Pin and use 6615 | Pin and use 6762 | |||||||||||||
0.87×10-4 | ||||||||||||||
0.74×10-4 | ||||||||||||||
3,136 | 15 | 6,000 | 7,840 | Bolt tightening 15680 | 35 | 1.0 | 1.0 | 50 | 80 | Bolt tightening 7056 | Bolt tightening 14112 | Bolt tightening 28067 | 4.83×10-4 | 44.3 |
3.79×10-4 | ||||||||||||||
3.15×10-4 | ||||||||||||||
2.84×10-4 | ||||||||||||||
Pin combination 12250 | Pin combination 6174 | Pin and use 1571 | Pin combination 24558 | |||||||||||
2.54×10-4 | ||||||||||||||
1.97×10-4 | ||||||||||||||
1.77×10-4 | ||||||||||||||
4,410 | 15 | 6,000 | 11,571 | Bolt tightening 22050 | 25 | 1.0 | 1.0 | 50 | 85 | 8,820 | Bolt tightening 17640 | 30,133 | 8.75×10-4 | 66.4 |
6.91×10-4 | ||||||||||||||
5.75×10-4 | ||||||||||||||
5.20×10-4 | ||||||||||||||
Pin and use 18620 | Pin and use 13524 | |||||||||||||
4.12×10-4 | ||||||||||||||
3.61×10-4 | ||||||||||||||
3.07×10-4 | ||||||||||||||
4. The allowable torque will vary according to the thrust load. Please confirm by the allowable moment line diagram (p.91). 5. The value of inertia moment is the value of the reducer body. The moment of inertia of the input gear is not included. 6. For moment stiffness and torsion stiffness, please refer to the calculation of inclination angle and torsion angle (p.99). 7. Rated torque refers to the torque value reflecting the rated life at rated output speed, not the data showing the upper limit of load. Please refer to the glossary (p.81) and product selection flow chart (p.82). 8. If you want to buy products other than the above speed ratio, please consult our company. 9. The above specifications are obtained according to the company’s evaluation method. Please confirm that the product meets the use conditions of carrying real aircraft before use. 10. When a radial load is applied to dimension B, please use it within the allowable radial load range. 11. 1 RV-80e r = 153 is only output shaft bolt fastening type( P.20,21) |
Exhibition:
APPLICATIONS:
FQA:
Q: What should I provide when I choose a gearbox/speed reducer?
A: The best way is to provide the motor drawing with parameters. Our engineer will check and recommend the most suitable gearbox model for your reference.
Or you can also provide the below specification as well:
1) Type, model, and torque.
2) Ratio or output speed
3) Working condition and connection method
4) Quality and installed machine name
5) Input mode and input speed
6) Motor brand model or flange and motor shaft size
Application: | Motor, Motorcycle, Machinery, Agricultural Machinery |
---|---|
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Layout: | Coaxial |
Gear Shape: | Cylindrical Gear |
Step: | Single-Step |
Samples: |
US$ 600/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Contribution of Agricultural Gearboxes to Tractor Functionality
An agricultural gearbox is a vital component of a tractor’s powertrain system, playing a pivotal role in enabling the tractor to perform a wide range of tasks on the farm. The functionality of tractors heavily relies on the proper operation of their gearboxes, which facilitate various essential functions:
- Power Transmission: Tractors are required to deliver substantial power and torque to perform tasks like plowing, tilling, and hauling. Agricultural gearboxes transmit power from the tractor’s engine to its wheels or other implement attachments, enabling efficient power delivery to the ground.
- Speed Control: Different agricultural tasks demand different speeds. Gearboxes allow operators to control the speed of the tractor to match the requirements of the task at hand.
Considerations for Heavy-Duty Farming Gearboxes
Heavy-duty farming applications require robust and reliable gearboxes that can withstand high loads, harsh conditions, and frequent use. Here are the key considerations for selecting gearboxes for heavy-duty farming:
- Load Capacity: Heavy-duty gearboxes must have a high load-carrying capacity to handle the demands of agricultural machinery, such as tillers, plows, and combines.
- Material Durability: Gearboxes should be constructed from durable materials, such as hardened steel or cast iron, that can withstand the stresses and impacts associated with heavy-duty tasks.
- Sealing and Protection: Effective sealing and protection mechanisms, such as robust seals and gaskets, prevent the ingress of dirt, water, and contaminants that can cause premature wear and damage.
- Lubrication System: A reliable and efficient lubrication system is crucial for heavy-duty gearboxes to ensure proper lubrication of components under high loads and temperatures.
- Heat Dissipation: Heavy-duty applications generate significant heat. Gearboxes should have efficient heat dissipation mechanisms, such as cooling fins or oil coolers, to prevent overheating and maintain performance.
- Design and Construction: Gearbox design should incorporate reinforced housing, larger bearings, and robust gears to handle heavy loads without compromising structural integrity.
- Alignment and Mounting: Proper alignment and mounting are essential to ensure smooth and efficient power transmission. Misalignment can lead to increased wear and reduced gearbox lifespan.
- Maintenance Accessibility: Heavy-duty gearboxes should be designed for easy maintenance access. Features such as removable covers and inspection points simplify servicing and repairs.
- Compatibility: Gearboxes should be compatible with the specific machinery and tasks they will be used for. Customizable gear ratios and output shaft configurations enhance versatility.
- Reliability and Longevity: Heavy-duty gearboxes should be built to last, with quality craftsmanship and components that can withstand the demanding conditions of agricultural operations.
- Safety: Safety features, such as guards and emergency shutdown mechanisms, are essential to protect operators and nearby personnel from potential hazards.
- Environmental Considerations: Gearbox designs should consider environmental regulations and emissions standards to minimize the impact on the environment.
- Cost-Effectiveness: While heavy-duty gearboxes require a higher upfront investment, their durability and performance contribute to long-term cost-effectiveness by reducing downtime and the need for frequent replacements.
By carefully considering these factors, farmers can select the appropriate heavy-duty gearboxes that enhance productivity and reliability in their farming operations.
Whether it’s slow-speed operations like tilling or high-speed transport, the gearbox provides the necessary speed adjustments.
- Implement Attachment: Tractors are often used with a variety of implements, such as plows, harrows, and mowers. The gearbox facilitates the connection and operation of these implements by transmitting power and torque from the tractor’s engine to the implement’s working components.
- Directional Changes: Agricultural gearboxes enable tractors to change direction smoothly. They provide the necessa
Types of Farming Equipment Incorporating Agricultural Gearboxes
Agricultural gearboxes play a vital role in various farming equipment, enhancing their efficiency and enabling them to perform essential tasks. Here are some types of farming equipment that commonly incorporate agricultural gearboxes:
- Tractors: Agricultural gearboxes are integral components of tractors, contributing to power transmission from the engine to various attachments such as plows, harrows, and mowers.
- Harvesters: Harvesters, used to gather crops like grains, fruits, and vegetables, utilize gearboxes to drive conveyor systems and separators, ensuring smooth and efficient harvesting operations.
- Planters and Seeders: Planters and seeders rely on gearboxes to precisely distribute seeds and fertilizers while maintaining the desired planting depth.
- Sprayers: Agricultural gearboxes are used in sprayers to drive pumps that distribute pesticides, herbicides, and fertilizers over fields.
- Hay Balers: Gearboxes are essential in hay balers for compacting and forming bales of hay, enabling easy storage and transportation.
- Manure Spreaders: Manure spreaders incorporate gearboxes to distribute and spread fertilizers and compost evenly across fields.
- Grain Augers: Grain augers, used for loading and unloading grains, feature gearboxes to drive the rotating screw mechanism that lifts and transfers grains.
- Cultivators: Cultivators use gearboxes to drive rotating tines or blades that loosen and prepare the soil for planting.
- Rotary Cutters: Rotary cutters, often attached to tractors, utilize gearboxes to power the spinning blades used for cutting tall grass, weeds, and brush.
- Threshers: Threshers, employed for separating grains from their husks or stalks, incorporate gearboxes to drive the threshing mechanisms.
These examples demonstrate the diverse applications of agricultural gearboxes across a wide range of farming equipment. By providing reliable power transmission and control, agricultural gearboxes contribute significantly to the productivity and efficiency of modern agricultural practices.
ry gearing arrangements to reverse the tractor’s movement, making it easy to maneuver around the farm, fields, and obstacles.
- Adaptation to Terrain: Agricultural gearboxes help tractors adapt to different terrains and soil conditions. By adjusting the gear ratio, tractors can optimize their performance for tasks like climbing slopes, working on uneven ground, or pulling heavy loads.
Modern agricultural gearboxes are designed for durability and reliability in the demanding farming environment. They are often equipped with features like multiple gears, synchronization mechanisms, and efficient lubrication systems to enhance their performance and longevity.
Regular maintenance and periodic checks are essential to keep the agricultural gearbox in optimal condition. Proper lubrication, gear inspection, and addressing any signs of wear or damage contribute to the longevity and consistent performance of the gearbox, thus ensuring the tractor’s functionality throughout the farming seasons.
editor by CX 2023-08-31